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Abstract 

Let r be a discrete group of finite virtual cohomological dimension, and let V be a f.g. Z- 
torsion free r module. In this situation, the Farrell cohomology of r with coefficients in V is 
defined and we prove in this paper cohomological non-vanishing results for these groups similar 
to those existing for finite groups and Tate cohomology, i.e. that we either have that these 
groups vanish for all dimensions or there are infinitely many nontrivial. The proof is based on a 
geometric approach to these groups, the study of Euler characteristics, minimal resolutions, and 
the notion of exponent. 

1991 Math. Subj. Class.: 55 

0. Introduction 

In this paper we extend nonvanishing cohomological results for modules over fi- 

nite groups to modules over discrete groups r, in a family X suitably defined, which 

are finitely generated over Z. We introduce a numerical invariant Tr(V) which de- 

termines cohomological nonvanishing under certain hypotheses (see Proposition 2.7). 

We prove: 

Theorem 5.23. Let r be an X-group with r’ <I Ta torsion-free normal subgroup 

of finite index. Let G := T/S. Let V be a finitely H-generated H-torsion-free 
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r-module. Assume that r is not torsion-free, and that JGI = p” for some prime 

p. Then either 

-i dimEpH (r, V) @ [F, + (-1) 
i+I ‘r(‘) . 

,T: T,, > 0 Vt E Z, 

or 

@*(I,, V) = 0 v* E z. 

(Here I?* denotes the Farrell cohomology. ) 

As an application of this result we have the following which describes a global 

nonvanishing for Farrell cohomology: 

Theorem 5.24. Under the hypotheses of the above theorem, precisely one of the fol- 
lowing must hold 

(1) Tr( V) = 0 and V is r- cohomologically trivial, or 

(2) Tr(V) = 0 and I?(T, V) # 0, Vi E Z, or 
(3) Tr(V) > 0 and fi2i(T, V) # 0, Vi E Z, or 
(4) Tr(V) < 0 and g2’-l(r, V) # 0, vi E Z. 

A key point to notice is that the invariant T’(V) can be computed using the finite 

subgroups in r, an explicit formula is provided in Proposition 2.8. 

As a corollary of the above proposition we have the following nonvanishing theorem 

analogous to the Nakayama-Rim Theorem for finite groups: 

Corollary 5.25. Under the above hypotheses, we have that if fi’(T, V) = 0 for two 
values of i not congruent mod2 then g*(r, V) E 0. 

Finally, the techniques used give: 

Theorem 4.20. Let r be an S-group, S a r a torsion-free subgroup of finite index 
(not necessarily of prime order as before), and let V be a finitely generated Z-torsion- 
free r-module. Then either I?*(r, V) E 0 or @‘(T, V) # 0 for infinitely many i E Z. 

The techniques we use are topological in nature, based on the methods introduced by 

Adem in [2, 31. However, we deal with the case of nontrivial coeficients (unlike [3]) 

and show how these tools apply to several cohomological questions involving infinite 

groups. The results we obtain are fundamental in understanding the cohomology of 

infinite groups, based on the much simpler and better understood case of finite groups. 

Hopefully these ideas will have further applications in both algebra and topology. 

1. Preliminaries 

Definition 1.1. We say that a group G has finite cohomological dimension (written 

cd G < 00) if there is a finite dimensional space of type K(G, 1). 
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Examples of the above definition include finitely generated nontrivial free groups, 

finitely many copies of the integers, the fundamental group of a closed connected 

surface other than the projective space, and the fundamental group of the complement 

of a knot in the three-dimensional sphere. 

The above examples show that models for classifying spaces might be found with 

rich geometric structure. Also note that in case a group has finite cd, it follows that the 

group cannot have nontrivial elements of finite order, i.e. it is necessarily a torsion-free 

group. Hence we need to extend our family so that torsion is included. 

Definition 1.2. Let r be a discrete group. We say that r has finite virtual cohomologi- 

cal dimension (written ucdr < oa) if I’ contains a subgroup (which we may assume 

to be normal) r’ C r such that 

(a) P has finite cd, and 

(b) jr/r'1 < 03. 

As examples of such groups we have the so-called arithmetic groups and mapping 

class groups. 

Definition 1.3. A complete resolution over ZT is an acyclic complex F, of projective 

ZT-modules, together with an ordinary projective resolution E: P, - Z, such that F, 
and P, coincide in sufficiently high dimensions. 

We may now define a suitable cohomology theory for r via these complete resolu- 

tions. 

Definition 1.4. Let F, be a complete resolution over Zr, and V a (left) r-module. 

We define the Farrell cohomology of r with coefficients in V as 

where the RHS denotes the (usual) cohomology of the complex Homzr(F,, V). 

Note that the above definition makes sense once we have the existence of complete 

resolutions. Assume this for the time being. We will give an explicit construction of 

such resolutions later on, suitable for our applications. Next, observe that in case r is 

torsion-free, we have that I?*(r, V) E 0, since in this case we may take F, = 0 as our 

complete resolution. And in case r is a finite group, this cohomology theory coincides 

with the usual Tate cohomology of the group. 

We now mm our attention to a geometric approach. Let G be a group. Let X be a 

G-CW-complex i.e. a CW-complex in which we have defined an action of G and this 

is by permuting the cells of X. Then the cellular chain C(X) has a natural action of G, 

and makes this complex a ZG-module in a natural way. Now observe that this complex 

consists of copies of Z in each dimension and the action of G is by permuting these 

summands. Hence we may describe this complex by the following: in each dimension 
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n L 0 we have C,(X) M eaEC, ZG@o, &,, where &, denotes a set of representatives 

of the G-orbits of cells in dimension II, and G,, is the isotropy of the cell cr, and Z, 

denotes the orientation module associated with rr. 

According to our definition, if G is a group of finite cohomological dimension, then 

there exists a finite dimensional space (which we may assume to be a CW) of type 

K(G, 1). The above discussion suggests the following. 

Definition 1.5. Let X be the class of discrete groups defined as follows: r is in !Z if 

there exists a contractible r-complex X with the following properties: 

(a) Some normal subgroup r’ of r acts freely on X and X/P is finite, 

(b) XH is contractible for every finite subgroup H c r. 

We will call such a complex an admissible space for r, and we will refer to members 

of 3 as %-groups. 

Let -lr be the family of finite vcd groups, by a theorem of Serre X < Y (see [7, 

Theorem 3.11). Moreover, by the work of Bore1 and Serre [5], the class of arithmetic 

groups is contained in 9Y. 

Our next proposition gives us a geometric description of the Farrell cohomology of 

9”groups r in terms of the admissible complex X and the family of finite subgroups 

of r. First we need a few known constructions. 

Let G be the quotient T/T’. As we know, there exists a complete resolution F, over 

ZG. We let r act on this complex by the canonical map r + G. Next observe that 

as X is an ET’ space, the complex C,(X) provides a resolution over ZT’. Thus r 

acts diagonally on the complex F, @ C,(X). It follows from these observations that 

F, c3 C,(X) is a complete resolution for r in the sense previously defined. Note that 

this proves the existence of a complete resolution for any %-group. Now using this 

resolution to compute the Farrell cohomology of r we have: 

Proposition 1.6. For any %-group r, and r-module V we have the following isomor- 

phism: 

?(r, V) 2 Z?*(G, C*(X) @rl V). 

Proof. As indicated above, we use the complete resolution C,(X)@F, to compute the 

Farrell cohomology and the following natural isomorphism: 

Homr(F, @ C*(X), V) g HomG(F,, C*(X) @rt V). 0 

2. A numerical invariant 

We introduce the following invariant for G-cochain complexes of finite type, i.e. 

a finite dimensional complex with totally finite rational homology, for a finite group 

G. Notice that the Euler characteristic x of a complex of finite homological type is 

defined. 
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Definition 2.7. Let C* be a cochain G-complex of finite homological type and G a 
finite group. We define the following invariant for C*: 

TG(C*) = IGlx((C* @ a)G) - x(C* @ Q). 

Under our assumptions, it is clear that the following examples are of finite type. Let 
C* = C*(X,,r’;Z) where X is an admissible space for the !Z-group r, then 

TG(c*) = )r : r’((i(r) - x(r)). 

This is the difference between the topological Euler characteristic and the group- 
theoretic version (see [7]). 

As a second example, consider 

c* = V for * = 0, 
0 otherwise, 

where V is a finitely P-generated and h-torsion-free G-module. Then 

?,( C* ) = 1 G 1 rUnkz VG - ranks v. 

We denote this by Tc(V). 
We will apply this invariant to the cochain complex given by C* = C*(X) @rr V, 

for an %-group r and a r-module V. The following proposition allows us to compute 
it explicitly when V is as above. 

Proposition 2.8. 

where o(i) is the number of cells mod r in dimension i, TO is the isotropy of the cell (T. 

Proof. First apply the decomposition described previously for the complex C,(X); this 
gives that in each dimension one has 

C(X) 2 @ z[rp-01, 
&O(i) 

where o(i) is as before, and we are taking one cell in each class mod r. Hence for 
any r-module V, and each dimension i we have 
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Therefore, our invariant can be written as 

To(c*) = Jr: rl c (-1)‘dinzQ Vr, - C(-l)‘dimo v, 

&o(i) o’(i) 

where this time o’(i) is the number of cells mod r’. Now, by using the fundamental 

counting principle for groups acting on sets we have that the above equals 

(r: r’l c (-1)‘dimo Vru - c (-l)‘dimo V. IG: G,I 

&o(i) uEo(i) 

; 

this last term is our desired result. 0 

Definition 2.9. Let r be a X-group, and V a r-module as above. We define 

Tr( V) := To(C*(x) @r, V), 

where the RI-IS is as in the previous proposition. Note that it is determined on the 

finite subgroups of r. 

To finish this section we mention that an immediate consequence of the definition 

of our invariant is that given an exact sequence of G-cochain complexes of finite type, 

0 + A* + C* + B* ---t 0 we have that To(C*) = T&4*) + Tc(B*). 

3. Minimal resolutions 

In this section we develop algebraic tools in order to establish the main theorem of 

this paper. We start by recalling some basic definitions. Throughout this section we 

will assume that G is a finite p-group for some prime p. Given a G-module A4 a 

projective resolution of A4 over ZG is an exact sequence of the form . . . Pi -+ Pi_ 1 + 

-. . -t PO + M -+ 0, where all of the Pi’s are ZG-projective G-modules. We will 

assume that A4 is a finitely Z-generated Z-torsion-free G-module. We will also say 

that a projective resolution of M is minimal if P,, is a projective resolution of minimal 

rank mapping onto ker a,_, , for all n > 0. We also recall that given any G-module 

M, and for any integer n, there exists a Z-torsion-free module Q(M) such that 

j3*(G, Q’(M)) z H*-‘(G,M). 

The above module s2 is known as a dimension shifting of M. Our first result gives 

conditions to a resolution in order to be minimal. The following appeared in [2]: 

Proposition 3.10. Let M be a jnitely Z-generated Z-torsion-free G-module. Let C = 
(P*, a, ) be a projective resolution of M. Then C is minimal if and only if rankz P,, = 
(GI dimEp H”(G, (M 8 IF,)‘), where * denotes the usual dual. 
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At this point, observe that we have already found the cohomology of G with co- 

efficients in a cochain complex. In order to use a result such as the previous one we 

either have to develop a theory of minimal resolutions for cochain complexes or find 

a module that encloses the same cohomological information as the given cochain. The 

following lemma gives us such a module. 

Proposition 3.11. Let {Co Z C’ A.. . ‘“-’ - C”) = (C*, 6) be a cochain complex of 
finitely generated ZIG-modules. Then C* fits into an exact sequence 

of jig. HG-cochain complexes where each F’ is ZG-free, and H*(D) = 0 for * > 0. 

Proof. To begin, we choose a f.g. free ZG-module F”-’ which maps onto C” under a 

map f”-’ : F”-’ - C”. Let A”-’ : C”-’ @F”-’ - C” be defined by A”-‘(x, y) = 

8-‘(x) + f’-‘(y). The composition 

is zero, Now choose Fn-*, f”-* : F”-* --+ ker A”-’ onto, and define A”-* : C”-* @ 

F*-* --f (7-l @ F’+’ by An-*(x, y) = (S’-*(x), 0) + f”-*(y). Note that 

A”-’ o A"-*(x, y) = A”-‘((S”-*(x),0) + F”-*(y) = 0. 

Note that the diagram 

(130) T (LO) T 1 

(y-2 c 
T 

cm-’ 
a”-1 

- C” 

clearly commutes. Also by construction it is clear that the top row is exact. Continuing 

like this we obtain a commutative diagram with exact top row 

0 + Ho -_, CO@FO 2 . . . + C”-‘$F”-’ “2 C” _,O 

t . . . t t 
co -+ . . . -+ C”-’ --_t C” 

Let D* = (C* @ F*,A*); then C’ q D*, and clearly D*/C* is a cochain complex 

of f.g. free ZG-modules. By construction, the cohomology of D’ is concentrated in 

dimension 0. q 

The main idea of the above proposition is that it allows us to get cohomological 

information of the group G with coefficients in a cochain complex from the coho- 

mology of the group with coefficients in a ZG-lattice: from the long exact sequence 

associated with 0 + C*iD* --+ F* + 0 and the fact that Z?*(G,F*) 5 0 as each F’ 
is HG-free, we obtain that i* : i?*(G,C*) + E?*(G,D’) is an isomorphism. On the 
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other hand, all the cohomology of D’ is concentrated in dimension zero, hence the 

spectral sequence 

+(G,Hq(D*)) ==+ +‘+q(G,D*) 

degenerates to yield the isomorphism 

&G,D*) E *(G,HO(D*)) Vi E Z, 

and the following definition. 

Definition 3.12. 

MC* := H’(D*), 

where D* is as in Proposition 3.11. 

We will now apply the above construction and the notion of minimal resolutions 

when we have coefficients in a cochain complex. The idea is now clear: we want to 

introduce the notion of minimal resolutions of cochain complexes. Since we are only 

dealing with the cohomological properties of these complexes, it is sufficient to get 

a ZG-lattice that encodes the same cohomological information. In other words, for 

any cochain G-complex C’, let MC* be as in the last definition. Let P, -+ MI* 

be a resolution for MC-. Then using Theorem 3.10 and the above discussion we 

have 

Proposition 3.13. Under the above hypotheses, the resolution P, + MC* is minimal 

if and only if 

IGI dim(Mc* @ F,)’ for i = 0, 
rankP, = 

(GIdimfi?-‘-‘(G,C* @ I$,) for i > 0. 

4. Exponents and cohomology 

In this section we will use exponents to prove that cohomological nonvanishing in 

a large enough range implies it in all dimensions. To begin we recall: 

Definition 4.14. Let A be a finite abelian group. The exponent exp(A) as the minimum 

natural number n such that n . A = 0. 

We know that in case G is a finite group acting on a finite dimensional space X, 

we have that IGI . r?:(X) z 0. This provides us with interesting examples of torsion 

groups. We analyze the exponent in this setup. We prove a fundamental result based 

on a theorem of Browder [6]: 
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Theorem 4.15. Let X be a free, connected finite G-CW-complex, and M a finitely 

Z-generated Z-torsion-free ZG-module. Then 

expj?‘(G,M)) nexp(I?-‘-‘(G;H’(X;Z)@M)). 
i/l 

Proof. There is a spectral sequence with coefficients of the form 

Epq = I+(G; Hq(X; Z) @ M) =+ @+‘(X; M) zz 0. 

As E;3q = 0 for q < 0 we have exact sequences 

Erz”l- l,r -+ E,o;o, + E;$ -+ 0, 

for r = 1,. . . , dim(X). Hence by the property of the exponent described above, we 

have 

exp(E,O;O, ) 
exp(E;-I-“‘) 

I ev(Eff2 1. 

Next by multiplying all of these out we obtain 

Now recall that the E,y,-“’ terms are subquotients of E;r-l,r = l?+‘(G;H’(X)@M) 
from which we infer the result. q 

We now apply this to a suitable G- space X, namely: let G -+ U(n) be an embedding 

of G into a unitary group for some n. This provides a free action of G (by left 

translations) on X = U(n). Moreover, this action is homologically trivial as it extends 

to an action of all of U(n) and this is a pathconnected compact Lie group. Using this 

situation we have the following 

Corollary 4.16. Let G w U(n) be an embedding of G into a unitary group U(n), 
for some n. Let M be a Jg. torsion-free ZG module then 

exp(g’(G;M)) 1 fiexp(ii’c*f’(G;M)). 
i-1 

Proof. Recall that H*(U(n)) S H*(S’ x S3 x . . . x S2+‘), and the action of G is 

homologically trivial. Hence, 

fi exp i??’ (G,H’(X)@M) g fiexpg-‘-‘(G,M). 
f-1 r=l 
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Now, by Tate duality H’(G) S l?‘(G,M’), where M’ denotes the dual of M, we 

have that the last product is that of @+‘(G,M) for Y = 1,. . . , n2 + 1. Consequently, 

I? 

expi?'(G,M) 1 nexpl?'+'(G,M). 

Now for an arbitrary index k, let EkM be a -k-dimensional dimension shift of 

M: i.e. we have Z?‘(G, KkM) g fik(G,M). Apply the previous result to the module 

PkM and observe that i?r+‘(G, QPkM) 2 I?+l+k(G,M) to get the statement. 0 

The following corollary has been proved by purely algebraic methods in [4]. We 

emphasize that our proof relies on the degree of a faithful representation of the finite 

group G and the divisibility properties of the exponent. 

Corollary 4.17. Under the hypotheses of the above corollary, assume that, for n2 + 2 

consecutive values of r, the groups @(G,M) vanish. Then E?*(G,M) E 0. 

Proof. Assume that @+kfl(G,M) = 0 for r = 0, 1, . . ., n2; by the previous corollary 

we have that fik(G,M) = 0. Thus $(G,M) = 0 for all r 5 n2 + k + 1. Now 

use Tate duality gek(G,M) = gk( G,M’) and the same argument again to get that 

j?‘(G,M)=Oforallr>n2+k+2. Cl 

As an application of these results we have the following: 

Theorem 4.18. Let cp : M --) N be a map of ZG-modules such that the induced map 

in cohomology 

up* : I?~(G,M) -+ Ek(c, N) 

is an isomorphism for n2 + 2 consecutive values of k. Then the induced map cp* is an 

isomorphism for all values of k. 

Proof. Let P be a finitely generated projective module that maps onto M. Let z : A4 ~3 

P --t N defined as the sum of later homomorphism and cp. Notice that E?*(G, M) g 
H*(G,M @ P). Then r is an onto map , z+ = cp*, hence z* is an isomorphism for 

n2 + 1 consecutive values of k. Let K be the kernel of z, the long exact sequence in 

Tate cohomology associated with the short exact sequence 0 -+ K --+ M --f N ---f 0 
gives that zk(G, K) = 0 for n2 + 1 consecutive values of k. Thus, by corollary (4.17), 

g*(G,K) E 0. Thus qp* is an isomorphism for all k. 0 

Corollary 4.19. Let (p : M ---f N be a map of ZT-modules such that the induced map 

in cohomology 

cp*: gk(r,M) + gk(r,N) 
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is an isomorphism for n2 i- 2 consecutive values of k. Then the induced map cp* is an 
isomorphism for all values of k. 

Theorem 4.20. Let P be an X-group, let T’ a r be a torsion free subgroup of finite 

index (not necessarily of prime order as before), and let V be a finitely Z-generated 
Z-torsion-free T-module. Then either i?*(T, V) E 0 or $(T, V) # 0 for infinitely 
many i E H. 

Proof. By the work done in previous section we know that fi*(T, V) is isomorphic 

to the Tate cohomology of the finite group G := r/P with coefficients in a suitable 

cochain complex. We now apply the proposition (4.17) to this case. 0 

5. Cohomological nonvanishing 

In this section we establish our nonvanishing cohomological result. G will be a finite 

p-group. We start with some remarks: Let C* be a G-cochain complex of finite type. 

Let MC := MC* be as in Definition 3.12. Now consider a finite stage of a minimal 

resolution P, --+ MC: 

Then according to (3.13) we have that 

(- 1 )k rank SZk+‘(MC) + rank(MC) 

= IGI 
[ 
e(-l)‘diq@?-’ G (G,C*@Fj,)+dim~(MC’@Fr) . 

i=l 1 
On the other hand, from the long exact sequence induced in cohomology by the short 

exact sequence of G-cochain complexes, 

o+c*~c*~c;~o, 

we obtain 

dimEr j?-‘-‘(G, C* @ Fr) = dimr, Z?‘-’ (G, C’) @ 5r + dim4 E?-‘(G, C’) @ Fr, 

and that 

dimEr(MC 8 Fr)G = dimE i?-‘(G, C*) @ Ft, + rank(k4CG). 

Combining the above equalities we finally obtain 

(-l)krankSZk+1(k4C)= (-l)kJGJdimE?-k(G,C*) 8 Fp + TG(Mc) 

= (-1)kJGldimg2-k(G,C*) @ Fr + TG(C*), 
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where the last equality follows from the property of the Y-invariant described in [3], 

and the definition of s2. Summarizing we have the following 

Proposition 5.21. 

(-l)%a& &+‘(MC) = (-l)k]Gldim3@-k(G,C*) @ Ep + ?-o(C*). 

Let us now assume that for a given G-complex C’, the module MC is not ZG- 

projective, hence @(MC) # 0 Vj. This gives the following 

Corollary 5.22. Let G be a finite p-group, and C’ a G-complex of finite type as 
above. Then 

IGI .dim$(G,C*)@ FP + (-l)j-’ Td(C*) > 0 Vj E Z. 

Now apply Proposition 5.22 in case C* = C*(X) @r-r I’ where X is an admissible 

complex for the %-group r and V is a r-module. We have the following 

Theorem 5.23. Let r be an %-group with T’ a Ta torsion free normal subgroup of 

finite index. Let G := T/T’. Let V be a finitely Z-generated, and Z-torsion free 
r-module. Assume that r is not torsion free and that (G[ = p” for some prime p. 
Then either 

-i dim~H(r,V)@Ep+(-l) 
i+l Tr(v) 

,r:r,, > 0 ViCZ, 

or 

Z*(r, v) = 0 v* E Z. 

As an application of this result we have the following which describes a global 

nonvanishing of these Farrell groups: 

Theorem 5.24. Under the hypotheses of the above theorem, precisely one of the fol- 
lowing must hold 

(1) T,-(V) = 0 and V is r-cohomologically trivial, or 

(2) Tr(V) = 0 and E?‘(T, V) # 0, Vi E Z, or 
(3) Tr(V) > 0 and %‘(r, V) # 0, Vi E h, or 
(4) Tr(V) < 0 and fi2i-1(r, V) # 0, Vi E Z. 

Proof. The proof is immediate from the above proposition. 0 

Notice that in case YH( V) = 0 for every finite subgroup H of r, then by Proposition 

2.8 we would have Tr(V) = 0. In fact it is enough to analyze this invariant on 

conjugacy classes of the finite subgroups of r. 

As a corollary of the above proposition we have the following result which is an 

extension to discrete groups of classical work due to Nakayama and Rim [lo, 121. 
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Corollary 5.25. Under the above hypotheses, we have that if&P, V) = 0 for two 
values of i not congruent mod2 then &*(I’, V) s 0. 

We finish this section with another application of the techniques used in this chapter 

to prove a special case of a result recently proved by [9]. Lee’s result is an extension 

of a similar statement concerning the cohomology of finite groups, to the family of 

%-groups. We mention that Lee’s methods heavily rely on homotopy theory and appli- 

cations of the Segal conjecture which algebraically identifies the localized classifying 

space of a finite group. 

Throughout the rest of the section, p will denote a fixed prime. Let 9(r) be the 

category whose objects are the finite p-subgroups of r, and whose morphisms are 

given by conjugation and inclusions. We also recall that for any r - CW space 2 we 

have a fibration: 

Z-+ErxrZ 

Br 

Finally, recall that in case that the action has fixed points, i.e. Zr # 0, there is a 

section H*(r) c) i@(Z). 
Our following lemma is an application of Mackey’s formula [14] for the description 

of the process of induction-restriction operations on G-modules: 

Lemma 5.26. Let Y be a fmite dimensional H-space where H is a subgroup of G, 
and G is a jinite group. Let Y xn G be the induced action to G, and P c G a p 

subgroup. Then we have an isomorphism 

@(Y XH G) - @@p,p(Y)r 

SEE 

where E is a coset representative for the double classes H\GJP. 

Theorem 5.27. Let cp : r2 -+ rl be a homomorphism of X-groups such that 

up* +*(I-~) -ii*(r2) 

is an isomorphism with trivial H,-coeficients. Assume further that both groups have 
normal, torsion-free subgroups of index a fmite power of a prime p. Then cp induces 

a bijection between the objects in 9(P2) and 9(Tl). 

Proof. We first prove that cp induces an injection of categories: Let X be an admissible 

complex for rt and make r2 act on X via cp. Let K = her(q). Our goal is to show 

that K has no subgroup P of order p”. Let G -+ U be an embedding of G into a 

unitary group U = U(n) for some n and let G act on U via this map. Therefore, I’, 

acts freely on the finite dimensional space X x U, and r2 also acts on this space, not 

necessarily freely. Since the map cp* is an isomorphism, it induces an isomorphism 

between the E2 terms of Leray the spectral sequences given by the corresponding 
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fibrations [8]. Thus, we have an isomorphism of the corresponding abutments and this 

gives an isomorphism: 

0 &,(X x U) SQ;2(X x U). 

This means any p-elementary abelian subgroup of Tz must act freely on X x U, hence 

K must be p-torsion-free [7]. 

From the above we may assume that cp is an injection. Notice that in case ri is 

torsion-free there is nothing to prove. Thus, we may assume that ri is not torsion 

free. Furthermore, as we have assumed that cp is the inclusion, we may take the same 

admissible complex X for both ri and r2. Thus we have the extensions 1 + r’ ---) 

ri 4 G -+ 1 and 1 + r’nr, -+ r2 + H --+ 1. Now let PcG be a subgroup 

which is the image of a finite subgroup in r,. According to the isomorphism given in 

Proposition 1.6 we have the following commutative diagram: 

$(X/r’) 2 I?o,(Y xH G) 

where Y = X/T’ fl r2, HS denotes conjugation by s, and p is the composition ind ’ rp*, 

where ind : f&(Y) -+ $(Y XH G) is the induction isomorphism. The morphism ,u’ 

is induced by p and is also an isomotphism as p is and G is a p-group [lo]. Both 

the left and right morphisms are induced by the corresponding restrictions to the p- 

group PC G. We also have that (X/I”)’ is not empty. Hence, we have an injection 

rn/lPI -@(x/r'), thus Z/lPI L) esEE I?;,,,(Y), and this implies that there exists 

s E G such that IPI = IHs n PI, i.e. there is an s’ such that P”’ C H, hence cp is onto 

on 9. 0 

The above argument works as we are able to prove that p’ is an isomorphism if p is. 

The above argument does not extend, at least immediately, to arbitrary finite groups. It 

would be desirable to be able to prove the above statement, for general finite groups, 

using only the techniques presented throughout this section. 

6. Examples 

We conclude with some applications of the results obtained. Assume that r is a 

group that fits into an extension 1 + r’ + r + P + 1, where r’ is an f.g. free 

group, and P is a p-group for some prime p. Let V be the trivial module Z. Let 

2 = dimH’(T,Q), c = dimHl(T’, 0). Then since H’(T,Q) = H1(T’,Q)G, and r’ 

is a free group, we may take an admissible complex of dimension one, i.e. a graph. 

Hence the value of r := Tr(Z) depends only on the values of c and E, and is 
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]PI(l - c”) - (1 - c). Th us its sign is determined as follows: 

(a) If c = 1 = E then r = 0 hence gzi # 0 for every i E Z. 

(b) If c = 1 and F = 0 then Y = IPI. Hencc_g2’ > (PI for every i E Z. 

(c) If c > 1 and E = 1 then r > 0 hence H2’ # 0 for every i E Z. 
(d) If c > 1 and C > 1 the sign of r is determined by 

if 

1 

IPJ 5 (1 - c)/(l - c”) Then r > 0 and f!?2i # O,b’i E Z. 

IP( > (1 - c)/( 1 - c”) Then r < 0 and g2i+1 # 0,Vi E Z. 

As an application of the above, let P = Z/2(a) @Z/2(@ and let X be a wedge 

of four circles, ei, . . . ,e4 with common point x. Let P act cellwise on X in the only 

possible way on the point x and on the 1 cells as c(: ei H e2, and fixing es and e4, 

and /3 : es H e4, and fixing ei and e2. Let X xp EP be the Bore1 construction on the 

space X, then from the bundle given by 

X +XxpEP 

BP 

we have that r := rci(X xp EP) fits into an extension 1 + r4 -+ r + P + 1, 

where r4 is the fundamental group of X and hence it is free in four generators. 

Therefore, and following the previous notation, c” = 2, c = 4 and hence r = -1. 

Thus, j?2i+1(r, Z) # 0 for every i E Z. 
As a second example consider r c S&_(Z) determined by the extension 1 -+ r(3) -+ 

r --+ Qs --) 1 where r(3) is the level 3 congruence subgroup, and Qs is the 2-Sylow 

subgroup of SL2(F3). We already know that x(&(Z)) = -4 and that ISL2(F3)I = 24, 

thus r(3) is free of rank 3. We also know from a work of Serre [15] that S&,(Z) %’ 

Z/6 *z/2 Z/4 and it acts on a tree with orbit space 

Moreover, we have that r(3) acts freely on this tree with orbit space a wedge of 

three circles. Then this space has an action of SL2(F3) with isotropy as above; thus its 

cellular complex has the form 

Q[&(E3)/z/2] -+ a[&(E,)/z/4] @ QW2(~3)lU61 -+ Q --$ 0. 

Next by restricting to Qs C X2( F3) and using Mackey’s formula we get 

@XQS/~PI>~ + (Q[QdU41)3 @ Q[Qs/Vl + Q + 0. 

Let V be a Z-torsion-free Qs-module. We let r act on V through the projection 

map r --+ Qs. Thus, according to the formula given in Definition 2.8 we have that 

$ Ti-(V) = -3 (; rz,2(v) + 3 (f 7$4(J9) + ; Tzjz(J9 

= - rz/2 + i TZ/4(V) 

= -(2 rank Vz’2 - rank I’) + 3 (rank Vz’4 - $ rank V) 
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Hence, in case V = Z as a trivial r-module we have that 

$+i 

and it follows that 

dimg2’(r, Z) 2 2 for every i E Z. 

On the other hand, let V = CD2, and let r act via the projection of Qs onto 2/2@2/2. 

Let X, Y be two generators of order four for Qs. Hence we have a projection Qg -+ 

XZ/2 @ i?/2. Let z act trivially on V and 7 by inversion. From this we have that 

the action of XY is trivial. Keeping track of this information in our formula, it now 

follows that 

$ Tr(V) = ;, 

and that 

diml?2i(r, V) > 3 for every i E 7. 
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